117 testVector.m_positionB = Vector(1000, 0, 1.5);
131 testVector.m_pLos = (18.0 / 50.0 +
exp(-50.0 / 63.0) * (1.0 - 18.0 / 50.0)) * (1.0 + 0);
138 (18.0 / 50.0 +
exp(-50.0 / 63.0) * (1.0 - 18.0 / 50.0)) *
139 (1.0 +
pow(2.0 / 10.0, 1.5) * 5.0 / 4.0 *
pow(50.0 / 100.0, 3) *
exp(-50.0 / 150.0));
145 testVector.m_pLos = (18.0 / 100.0 +
exp(-100.0 / 63.0) * (1.0 - 18.0 / 100.0)) * (1.0 + 0);
151 testVector.m_pLos = (18.0 / 100.0 +
exp(-100.0 / 63.0) * (1.0 - 18.0 / 100.0)) *
152 (1.0 +
pow(2.0 / 10.0, 1.5) * 5.0 / 4.0 * 1.0 *
exp(-100.0 / 150.0));
165 testVector.m_pLos = (18.0 / 50.0 +
exp(-50.0 / 36.0) * (1.0 - 18.0 / 50.0));
172 testVector.m_pLos = (18.0 / 100.0 +
exp(-100.0 / 36.0) * (1.0 - 18.0 / 100.0));
265 "Got unexpected LOS probability");
#define NS_TEST_EXPECT_MSG_EQ_TOL(actual, limit, tol, msg)
Test that actual and expected (limit) values are equal to plus or minus some tolerance and report if ...